生成对抗网络(GANs)的训练效果很大程度上取决于其损失函数的选择。本研究首先介绍经典GAN损失函数的理论基础,随后使用PyTorch实现包括原始GAN、最小二乘GAN(LS-GAN)、Wasserstein GAN(WGAN)及带梯度惩罚的WGAN(WGAN-GP)在内的多种损失函数。 生成对抗网络(GANs)的工作原理 ...
自从扩散模型发布以来,GAN的关注度和论文是越来越少了,但是它们里面的一些思路还是值得我们了解和学习。所以本文我们来使用Pytorch 来实现SN-GAN 谱归一化生成对抗网络是一种生成对抗网络,它使用谱归一化技术来稳定鉴别器的训练。谱归一化是一种权值归 ...
Deep learning continues to be one of the hottest fields in computing, and while Google’s TensorFlow remains the most popular framework in absolute numbers, Facebook’s PyTorch has quickly earned a ...
Dr. James McCaffrey of Microsoft Research explains a generative adversarial network, a deep neural system that can be used to generate synthetic data for machine learning scenarios, such as generating ...
Dr. James McCaffrey of Microsoft Research explains a generative adversarial network, a deep neural system that can be used to generate synthetic data for machine learning scenarios, such as generating ...
Learn how to create a simple neural network, and a more accurate convolutional neural network, with the PyTorch deep learning library PyTorch is a Python-based tensor computing library with high-level ...
一些您可能无法访问的结果已被隐去。
显示无法访问的结果