Spatial transcriptomics and gene expression analysis represent a transformative approach in biomedical research, integrating the spatial context of tissues with high-resolution profiling of gene ...
This figure shows how the STAIG framework can successfully identify spatial domains by integrating image processing and contrastive learning to analyze spatial transcriptomics data effectively.
Biological systems are inherently three-dimensional—tissues form intricate layers, networks, and architectures where cells interact in ways that extend far beyond a flat plane. To capture the true ...
Spatial transcriptomics provides a unique perspective on the genes that cells express and where those cells are located. However, the rapid growth of the technology has come at the cost of ...
PALO ALTO, Calif.--(BUSINESS WIRE)--Curio Bioscience today announced it has commenced commercial operations with the launch of Curio Seeker, the world’s first high-resolution, whole-transcriptome ...
Conventional transcriptomic techniques have revealed much about gene expression at the population and single-cell level—but they overlook one crucial factor: spatial context. In musculoskeletal ...
Spatial transcriptomics is a technique that provides information about gene expression patterns within intact tissues. This technology employs various methodologies, including in situ sequencing (ISS) ...
Biological tissues are made up of different cell types arranged in specific patterns, which are essential to their proper functioning. Understanding these spatial arrangements is important when ...
Technological development is key to improving the way hematologic cancer is diagnosed and treated. With this vision, the Josep Carreras Leukemia Research Institute is committed to the creation and ...
Spatial transcriptomics provides a unique perspective on the genes that cells express and where those cells are located. However, the rapid growth of the technology has come at the cost of ...
当前正在显示可能无法访问的结果。
隐藏无法访问的结果