变换器(Transformers)通常与分类器,回归器或其他的学习器组合在一起以构建复合估计器。 完成这件事的最常用工具是 Pipeline。 Pipeline 经常与 FeatureUnion 结合起来使用。 FeatureUnion 用于将变换器(transformers)的输出串联到复合特征空间(composite feature space)中 ...
数据挖掘通常包括数据采集,数据分析,特征工程,训练模型,模型评估等步骤。显然,这不是巧合,这正是sklearn的设计风格。我们能够更加优雅地使用sklearn进行特征工程和模型训练工作。此时,不妨从一个基本的数据挖掘场景入手: 我们使用sklearn进行虚线框 ...
Scikit-learn 更新了,新特性主要包括选择超参数更快的方法、ICE 图、直方图 boosting 改进、OneHotEncoder 支持缺失值等。 自 2007 年发布以来,Scikit-learn 已经成为 Python 领域非常重要的机器学习库,支持分类、回归、降维和聚类四大机器学习算法,还包括了特征提取 ...
很多常用说法都跟人的身体部位有关,比如披头散发、七嘴八舌、胸有成竹、手忙脚乱等等。今天先跟大家分享一些与人的头部(head)有关的英语俚语。 常用的有“Heads up!”,字面意思“头顶上”,那肯定是小心为妙,所以这个词组的意思是“小心、当心 ...
现在来为机器学习算法准备数据。不要手工来做,你需要写一些函数,理由如下: 函数可以让你在任何数据集上(比如,你下一次获取的是一个新的数据集)方便地进行重复数据转换。你能慢慢建立一个转换函数库,可以在未来的项目中复用。在将数据传给算法 ...
我们使用sklearn进行虚线框内的工作(sklearn也可以进行文本特征提取)。通过分析sklearn源码,我们可以看到除训练,预测和评估以外,处理其他工作的类都实现了3个方法:fit、transform和fit_transform。从命名中可以看到,fit_transform方法是先调用fit然后调用transform ...
导语:基于SciPy的众多分支版本中,最有名,也是专门面向机器学习的就是Scikit-learn。 对Python语言有所了解的科研人员可能都知道SciPy——一个开源的基于Python的科学计算工具包。基于SciPy,目前开发者们针对不同的应用领域已经发展出了为数众多的分支版本 ...
一些您可能无法访问的结果已被隐去。
显示无法访问的结果